Review Sentiment Scoring via a Parse-and-Paraphrase Paradigm
نویسندگان
چکیده
This paper presents a parse-and-paraphrase paradigm to assess the degrees of sentiment for product reviews. Sentiment identification has been well studied; however, most previous work provides binary polarities only (positive and negative), and the polarity of sentiment is simply reversed when a negation is detected. The extraction of lexical features such as unigram/bigram also complicates the sentiment classification task, as linguistic structure such as implicit long-distance dependency is often disregarded. In this paper, we propose an approach to extracting adverb-adjective-noun phrases based on clause structure obtained by parsing sentences into a hierarchical representation. We also propose a robust general solution for modeling the contribution of adverbials and negation to the score for degree of sentiment. In an application involving extracting aspect-based pros and cons from restaurant reviews, we obtained a 45% relative improvement in recall through the use of parsing methods, while also improving precision.
منابع مشابه
Harvesting and summarizing user-generated content for advanced speech-based human-computer interaction
There have been many assistant applications on mobile devices, which could help people obtain rich Web content such as user-generated data (e.g., reviews, posts, blogs, and tweets). However, online communities and social networks are expanding rapidly and it is impossible for people to browse and digest all the information via simple search interface. To help users obtain information more effic...
متن کاملPARADIGM: Paraphrase Diagnostics through Grammar Matching
Paraphrase evaluation is typically done either manually or through indirect, taskbased evaluation. We introduce an intrinsic evaluation PARADIGM which measures the goodness of paraphrase collections that are represented using synchronous grammars. We formulate two measures that evaluate these paraphrase grammars using gold standard sentential paraphrases drawn from a monolingual parallel corpus...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملAMRITA_CEN$@$SemEval-2015: Paraphrase Detection for Twitter using Unsupervised Feature Learning with Recursive Autoencoders
We explore using recursive autoencoders for SemEval 2015 Task 1: Paraphrase and Semantic Similarity in Twitter. Our paraphrase detection system makes use of phrase-structure parse tree embeddings that are then provided as input to a conventional supervised classification model. We achieve an F1 score of 0.45 on paraphrase identification and a Pearson correlation of 0.303 on computing semantic s...
متن کاملMachine Translation for Languages Lacking Bitext via Multilingual Gloss Transduction
We propose and evaluate a new paradigm for machine translation of low resource languages via the learned surface transduction and paraphrase of multilingual glosses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009